Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

### Tehran Urban & Suburban Railway Operation Company

## Metro Cars Propulsion Design & Production Project

# **Traction analysis for 4 lines**

JDEVS-MPDP-PS-PY-165-00

| JAHAD DANESHGAHI ELM VA SANNAT<br>JULY 2022 |           |             |             |         |          |          |  |  |
|---------------------------------------------|-----------|-------------|-------------|---------|----------|----------|--|--|
|                                             |           |             |             |         |          |          |  |  |
| 0                                           | July 2022 | First Issue | M.R.Shakour | M.Afjeh | M.Fazeli | M.Fazeli |  |  |
| REV.                                        | DATE      | DESCRIPTION | Prepare     | Check   | Confirm  | Approve  |  |  |

Address: No.188 – MALEKLOO St. – South of Iran University of Science and Technology – North HEYDARKHANI St. – FARJAM St. – NARMAK – TEHRAN.



Phone: +982177455001-2 Email: info@jdevs.ir



**JDEVS** 

Traction analysis for 4 lines



| SHEET | RI | EV | IS | <b>IO</b> ] | N | REMARK | SHEET | R | EV | ISI | [0] | N | REMARK | SHEET | R | E | VIS | SIC | )N | REMARK |
|-------|----|----|----|-------------|---|--------|-------|---|----|-----|-----|---|--------|-------|---|---|-----|-----|----|--------|
|       | 0  | 1  | 2  | 3           | 4 |        |       | 0 | 1  | 2   | 3   | 4 |        |       | 0 | 1 | 2   | 3   | 4  |        |
| 1     | Х  |    |    |             |   |        | 31    | Х |    |     |     |   |        | 61    |   |   |     |     |    |        |
| 2     | Х  |    |    |             |   |        | 32    | Х |    |     |     |   |        | 62    |   |   |     |     |    |        |
| 3     | Х  |    |    |             |   |        | 33    | Х |    |     |     |   |        | 63    |   |   |     |     |    |        |
| 4     | Х  |    |    |             |   |        | 34    |   |    |     |     |   |        | 64    |   |   |     |     |    |        |
| 5     | Х  |    |    |             |   |        | 35    |   |    |     |     |   |        | 65    |   |   |     |     |    |        |
| 6     | Х  |    |    |             |   |        | 36    |   |    |     |     |   |        | 66    |   |   |     |     |    |        |
| 7     | Х  |    |    |             |   |        | 37    |   |    |     |     |   |        | 67    |   |   |     |     |    |        |
| 8     | Х  |    |    |             |   |        | 38    |   |    |     |     |   |        | 68    |   |   |     |     |    |        |
| 9     | Х  |    |    |             |   |        | 39    |   |    |     |     |   |        | 69    |   |   |     |     |    |        |
| 10    | Х  |    |    |             |   |        | 40    |   |    |     |     |   |        | 70    |   |   |     |     |    |        |
| 11    | Х  |    |    |             |   |        | 41    |   |    |     |     |   |        | 71    |   |   |     |     |    |        |
| 12    | Х  |    |    |             |   |        | 42    |   |    |     |     |   |        | 72    |   |   |     |     |    |        |
| 13    | Х  |    |    |             |   |        | 43    |   |    |     |     |   |        | 73    |   |   |     |     |    |        |
| 14    | Х  |    |    |             |   |        | 44    |   |    |     |     |   |        | 74    |   |   |     |     |    |        |
| 15    | Х  |    |    |             |   |        | 45    |   |    |     |     |   |        | 75    |   |   |     |     |    |        |
| 16    | Х  |    |    |             |   |        | 46    |   |    |     |     |   |        | 76    |   |   |     |     |    |        |
| 17    | Х  |    |    |             |   |        | 47    |   |    |     |     |   |        | 77    |   |   |     |     |    |        |
| 18    | Х  |    |    |             |   |        | 48    |   |    |     |     |   |        | 78    |   |   |     |     |    |        |
| 19    | Х  |    |    |             |   |        | 49    |   |    |     |     |   |        | 79    |   |   |     |     |    |        |
| 20    | Х  |    |    |             |   |        | 50    |   |    |     |     |   |        | 80    |   |   |     |     |    |        |
| 21    | Х  |    |    |             |   |        | 51    |   |    |     |     |   |        | 81    |   |   |     |     |    |        |
| 22    | Х  |    |    |             |   |        | 52    |   |    |     |     |   |        | 82    |   |   |     |     |    |        |
| 23    | Х  |    |    |             |   |        | 53    |   |    |     |     |   |        | 83    |   |   |     |     |    |        |
| 24    | Х  |    |    |             |   |        | 54    |   |    |     |     |   |        | 84    |   |   |     |     |    |        |
| 25    | Х  |    |    |             |   |        | 55    |   |    |     |     |   |        | 85    |   |   |     |     |    |        |
| 26    | Х  |    |    |             |   |        | 56    |   |    |     |     |   |        | 86    |   |   |     |     |    |        |
| 27    | Х  |    |    |             |   |        | 57    |   |    |     |     |   |        | 87    |   |   |     |     |    |        |
| 28    | Х  |    |    |             |   |        | 58    |   |    |     |     |   |        | 88    |   |   |     |     |    |        |
| 29    | Χ  |    |    |             |   |        | 59    |   |    |     |     |   |        | 89    |   |   |     |     |    |        |
| 30    | Х  |    |    |             |   |        | 60    |   |    |     |     |   |        | 90    |   | [ | [   |     |    |        |



Page 2 of 33

Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

#### In The Name of Allah

#### Vehicle Data

Train Configuration The train configuration is according to Mc-T-M-M-T-Mc.

Mc Motor car with driver's cab

T Trailer car

M Motor car

n\_car 7

Num\_motor 20

#### Weight

according to the proposal of the Metran working group is as follows:

Dynamic Weight 22 Ton Rotational mass

AW0 = 256.584 Ton AW1 = 278.004 Ton AW2 = 320.494 Ton

AW3 = 348.284 Ton

#### **Total Train Resistance**

The Davis formula is used for running resistance

 $Frr = A + B \cdot v + C \cdot v [N]$ 

|   | AW0   | AW1   | AW2   | AW3   |
|---|-------|-------|-------|-------|
| А | 5282  | 5419  | 5691  | 5868  |
| В | 35.91 | 38.91 | 44.86 | 48.75 |
| С | 0.81  | 0.81  | 0.81  | 0.81  |



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

#### **Wheel Diameter**

New: 860 mm

Half worn: 825 mm (base of Performance Calculations)

Fully worn: 790 mm

#### **Gear parameter**

efficiency gear: 0.98

gear ratio: 7.06

#### Motor

| F base:56      | [Hz]                                          |
|----------------|-----------------------------------------------|
| motor nominal  | torque: 1036 [N.m]                            |
| nominal line v | oltage: 585 V .: 825 Vdc , Propulsion: 750Vdc |
| nominal power  | 180 Kw braking                                |

#### Line parameter

Max Acceleration :1 m/s2 on Propulsion and 1.1 m/s2 on braking

Max gradient: 5%

#### **Adhesion Coefficient**

The adhesion coefficient according to the proposal of the Metran working group is as follows:

$$\mu_{AD} = \frac{25}{100 + V} \qquad \text{V: Km/h}$$



| Metro Cars Propulsion Design & Production Project | IDEVS |              |
|---------------------------------------------------|-------|--------------|
| Traction analysis for 4 lines                     | JDEV3 |              |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 5 of 33 |



1.Tractive force at different car weights e.g. a  $_{max}=1 \text{ m/s}^2$ 

2.Braking force at different car weights e.g.



a max=1.1 m/s<sup>2</sup> at aw  $_0/aw_1$ 

From 10 to 5 km / h reduced in the form of ramps, the amount of electric braking force is reduced and from 5 to 0 km / h only air braking is applied. (See Fig. 27)

| Metro Cars Propulsion Design & Production Project<br>Traction analysis for 4 lines | JDEVS | (142)<br>(142) |
|------------------------------------------------------------------------------------|-------|----------------|
| JDEVS-MPDP-PS-PY-165-00                                                            |       | Page 6 of 33   |

3. Standard duty cycle at AW3 & Gradient 0% - velocity and acceleration as a function of time e.g.



4. Standard duty cycle at AW3 & Gradient 0% - velocity and acceleration as a function of distance e.g.



| Metro Cars Propulsion Design & Production Project | IDEVS | (جهاد)       |
|---------------------------------------------------|-------|--------------|
| Traction analysis for 4 lines                     | JPEV3 |              |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 7 of 33 |

5. Standard duty cycle at AW3 & Gradient 0% – Traction force and power of one MCM as a function of time e.g.



6- Standard duty cycle at AW3 & Gradient 0% –Current as a function of time e.g.



| Metro Cars Propulsion Design & Production Project | IDEVE |              |
|---------------------------------------------------|-------|--------------|
| Traction analysis for 4 lines                     |       |              |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 8 of 33 |

7- Standard duty cycle at AW3 & Gradient 0% –velocity and acceleration as a function of distance e.g.



8- Standard duty cycle at AW3 & Gradient 0% –velocity and acceleration as a function of time e.g.



| Metro Cars Propulsion Design & Production Project | IDEVS | (جهاد)       |
|---------------------------------------------------|-------|--------------|
| Traction analysis for 4 lines                     | J9EV3 |              |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 9 of 33 |

9- Standard duty cycle at AW3 & Gradient 0% –velocity and reduce acceleration as a function of time e.g.



10- Standard duty cycle at AW3 & Gradient 0% –velocity and reduce acceleration as a function of distance e.g.



| Metro Cars Propulsion Design & Production Project | IDEVS | (جهاد)        |
|---------------------------------------------------|-------|---------------|
| Traction analysis for 4 lines                     | J9EV3 |               |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 10 of 33 |

11- Standard duty cycle at AW3 & Gradient 5% –velocity and acceleration as a function of time e.g.



12- Standard duty cycle at AW3 & Gradient 5% –velocity and acceleration as a function of distance e.g.



| Metro Cars Propulsion Design & Production Project | IDEVS | (جهاد)        |
|---------------------------------------------------|-------|---------------|
| Traction analysis for 4 lines                     | JEVS  |               |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 11 of 33 |

13.Degraded mode (90%) Gradient 5% at Aw3 -velocity, acceleration and mean acceleration as a function of time e.g.



14.Degraded mode (90%) Gradient 5% at Aw3 -velocity, acceleration and mean acceleration as a function of distance e.g.



| Metro Cars Propulsion Design & Production Project | IDEVS  | جهاد ا        |
|---------------------------------------------------|--------|---------------|
| Traction analysis for 4 lines                     | UDE VO |               |
| JDEVS-MPDP-PS-PY-165-00                           |        | Page 12 of 33 |

15.Degraded mode (80%) Gradient 5% at Aw3 -velocity, acceleration and mean acceleration as a function of distance e.g.



16.Degraded mode (80%) Gradient 5% at Aw3 -velocity, acceleration and mean acceleration as a function of time e.g.



| Metro Cars Propulsion Design & Production Project | JDEVS | (جهاد)        |
|---------------------------------------------------|-------|---------------|
| Traction analysis for 4 lines                     |       |               |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 13 of 33 |

17.Degraded mode (70%) Gradient 5% at Aw3 -velocity, acceleration and mean acceleration as a function of distance e.g.



18.Degraded mode (70%) Gradient 5% at Aw3 -velocity, acceleration and mean acceleration as a function of time e.g.



| Metro Cars Propulsion Design & Production Project | JDEVS | (جهاد)        |
|---------------------------------------------------|-------|---------------|
| Traction analysis for 4 lines                     |       |               |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 14 of 33 |

19. Towing mode, Gradient 5% at Aw0 for AW2 -velocity, acceleration and mean acceleration as a function of distance e.g.



20. Towing mode, Gradient 5% at Aw0 for AW2 -velocity, acceleration and mean acceleration as a function of time e.g.



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 15 of 33

21. Track simulation at aw3 uphill – line 3 Total trip 47 min Regeneration energy 490 Kwh Tractive energy 1160 Kwh Total stops at stations 8.3 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 16 of 33

22. Track simulation at aw3 downhill – line 3 Total trip 46 min Regeneration energy 1020 Kwh Tractive energy 560 Kwh Total stops at stations 8.3 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

23. Track simulation at aw3 uphill Degraded 70% – line 3 Total trip 55 min Regeneration energy 370 Kwh Tractive energy 1030 Kwh Total stops at stations 8.3 min



**JDEVS** 

Page 17 of 33

Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

24. Track simulation at aw3 downhill Degraded 70% – line 3 Total trip 53 min Regeneration energy 930 Kwh Tractive energy 460 Kwh Total stops at stations 8.3 min





Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 19 of 33

25. Track simulation at aw3 uphill – line 4 Total trip 31 min Regeneration energy 400 Kwh Tractive energy 520 Kwh Total stops at stations 6.3 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 20 of 33

26. Track simulation at aw3 downhill – line 4 Total trip 31 min Regeneration energy 430 Kwh Tractive energy 450 Kwh Total stops at stations 6.3 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

27. Track simulation at aw3 uphill Degraded 70% – line 4 Total trip 34 min Regeneration energy 350 Kwh Tractive energy 470 Kwh Total stops at stations 6.3 min



**JDEVS** 

Page 21 of 33

Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

28. Track simulation at aw3 downhill Degraded 70% – line 4 Total trip 34 min Regeneration energy 380 Kwh Tractive energy 400 Kwh Total stops at stations 6.3 min



**JDEVS** 

Page 22 of 33

Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 23 of 33

29. Track simulation at aw3 uphill – line 6 Total trip 47 min Regeneration energy 430 Kwh Tractive energy 900 Kwh Total stops at stations 8.6 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 24 of 33

30. Track simulation at aw3 downhill – line 6 Total trip 46 min Regeneration energy 770 Kwh Tractive energy 500 Kwh Total stops at stations 8.6 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 25 of 33

31. Track simulation at aw3 uphill Degraded 70% – line 6 Total trip 52 min
Regeneration energy 370 Kwh
Tractive energy 840 Kwh
Total stops at stations 8.6 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

32. Track simulation at aw3 downhill Degraded 70% – line 6 Total trip 51 min Regeneration energy 720 Kwh Tractive energy 440 Kwh Total stops at stations 8.6 min



**JDEVS** 

Page 26 of 33

Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 27 of 33

33. Track simulation at aw3 uphill – line 7

Total trip 37 min

Regeneration energy 370 Kwh

Tractive energy 900 Kwh



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 28 of 33

34. Track simulation at aw3 downhill – line 7

Total trip 36 min

Regeneration energy 800 Kwh

Tractive energy 430 Kwh



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 29 of 33

35. Track simulation at aw3 uphill Degraded 70% line 7

Regeneration energy 277 Kwh

Tractive energy 797 Kwh

Total trip 44 min



Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

JDEVS Page 30 of 33

36. Track simulation at aw3 downhill Degraded 70% line 7

Regeneration energy 721 Kwh

Tractive energy 344 Kwh

Total trip 42 min



| Metro Cars Propulsion Design & Production Project | JDEVS |               |
|---------------------------------------------------|-------|---------------|
| Traction analysis for 4 lines                     |       |               |
| JDEVS-MPDP-PS-PY-165-00                           |       | Page 31 of 33 |

37-Tractive Effort as a Function of Line Voltage (Used Wheels as Worst Case )



Line Voltage [V]

Traction analysis for 4 lines

JDEVS-MPDP-PS-PY-165-00

38-Tractive Effort as a Function of Speed (Used Wheels as Worst Case )



**JDEVS** 

Page 32 of 33

| Metro Cars Propulsion Design & Production Project<br>Traction analysis for 4 lines | JDEVS |               |
|------------------------------------------------------------------------------------|-------|---------------|
| JDEVS-MPDP-PS-PY-165-00                                                            |       | Page 33 of 33 |

39. From 10 to 5 km / h reduced in the form of ramps, the amount of electric braking force is reduced and from 5 to 0 km / h only air braking is applied.

